minkowski3 - README
A program for calculating Minkowski functionals of density fields with
periodic boundary conditions
written by Jens Schmalzing. January 1997;
updated by Thomas Buchert.
email: buchert@obs.univ-lyon1.fr
The program calculates densities of Minkowski functionals in the V
normalization. Minkowski functionals are discussed in all the
references below. The derivation of the formulae and the analytical
values used in the program are given in [8]. References [2,7,9,10]
provide background reading on Minkowski functionals, while [1,3,4,5,6]
present some applications on points processes.
Unpacking:
The program is distributed as an uuencoded compressed tar file
`beyond.uu' (Type: uudecode beyond.uu; gunzip beyond.tar.gz; tar -xvf
beyond.tar) Now the directory `beyond' should look like this:
Makefile fourier.c image.h minkowski.c org.h
Readme fourier.h main.c minkowski.h
beyond.sm image.c main.h org.c
Installation:
Go into the directory `beyond' and type: make
Perhaps you have to choose a different c-compiler and different flags
in the first few lines of Makefile. You may also alter the program
name there. If `make' gives no error you probably generated the
program `beyond' successfully.
To check the installation type: make test
Then the examples explained in the next section are calculated. You
can plot the results using the SuperMongo macro `beyond' provided in the
file `beyond.sm'
To restore the original files type: make realclean
This will remove all files generated by previous calls of make.
Examples:
beyond -\?
get a list of options and the actual (default) values of the
parameters.
beyond -l-4 -h4 -b10 -s4 -L10 -x32 -y32 -z32 -otest.res -0test.xpm
calculate the Minkowski functionals at 10 threshold values between
-4 and 4, for 10 realizations of a Gaussian random field with
scale-free power spectrum, normalized to mean 0 and variance
1. Density values are obtained on 32^3 lattice points in a unit box,
with Gaussian smoothing of 4/32=0.125. The mean and variance of the
Minkowski functionals over all realizations are output to the file
test.res. Also, the final realization is given as a XPM bitmap in
test.xpm.
CPU load:
On a hp 715/80 the test calculation took a little more than 1 minute,
using less than 1 MByte of memory. An IBM RS/6000 can do a single
realization for a 256^3 lattice at 100 threshold values in about one
hour, using roughly 192 MByte of memory.
References:
[1] Thomas Buchert (1996):
`Robust morphological measures for large-scale
structure',
in: 11. Potsdam
Cosmology Workshop on Large-scale Structure in the Universe,
Geltow 1995, F.R.G., J. Mücket, S. Gottlöber, V. Müller (eds.),
World Scientific, 156-161.
[2] Martin Kerscher, Jens Schmalzing and Thomas Buchert (1996):
`Analyzing Galaxy
Catalogues with Minkowski Functionals',
in:
Mapping, Measuring and Modelling the Universe, Valencia 1995,
P. Coles, V.J. Martinez, M.J. Pons (eds.), ASP Conference Series, 247-252.
[3] Martin Kerscher, Jens Schmalzing, Thomas Buchert and Herbert
Wagner (1998):
`Fluctuations in the IRAS 1.2 Jy catalogue',
Astron. Astrophys., 333,
1-12.
[4] Martin Kerscher, Jens Schmalzing, J&oumrg Retzlaff, Stefano Borgani,
Thomas Buchert, Stephan Gottlöber, Volker Müller, Manolis Plionis
and Herbert Wagner (1997):
`Minkowski Functionals of Abell/ACO clusters',
M.N.R.A.S., 284,
73-84.
[5] Martin Kerscher, Klaus R. Mecke, Jens Schmalzing, Claus Beisbart, Thomas Buchert and Herbert Wagner (2001):
`Morphological fluctuations of large-scale structure: The PSCz survey',
Astron. Astrophys., 373,
1-11.
[6] C. Hikage, J. Schmalzing, T. Buchert, Y. Suto, I. Kayo, A. Taruya, Michael S. Vogeley, F. Hoyle, J.R. Gott III and J. Brinkmann (2003):
`Minkowski Functionals of SDSS Galaxies I : Analysis of Excursion Sets',
P.A.S.J., 55,
911-931.
[7] Klaus R. Mecke, Thomas Buchert and Herbert Wagner (1994):
`Robust morphological measures for large-scale structure
in the Universe',
Astron. Astrophys. 288,
697-704.
[8] Jens Schmalzing and Thomas Buchert (1997):
`Beyond genus statistics: a unifying approach to the morphology of cosmic
structure', Ap.J. Lett. 482,
L1-L4.
[9] Jens Schmalzing, Martin Kerscher and Thomas Buchert (1996):
`Minkowski
functionals in Cosmology',
in: Proc. International School Enrico Fermi, Course CXXXII (Dark Matter in the
Universe), Varenna 1995, S. Bonometto, J. Primack, A. Provenzale (eds.), IOS Press Amsterdam, 281-291.
[10] Jens Schmalzing, Diplomarbeit, Ludwig--Maximilians--Universit&aumt
M&uumnchen, 1996, in German, English excerpts available.
Last Update: July 5, 2009